A novel three-dimensional simultaneous B(1) and T(1) mapping method is introduced: the method of slopes (MoS). The linearity of the spoiled gradient recalled echo (SPGR) signal vs flip angle relation is exploited: B(1) mapping is achieved by a two-point extrapolation to signal null with a correction scheme while T(1) mapping uses the slopes of the SPGR signal vs flip angle curves near the origin and near the signal null. This new method improves upon the existing variable flip angle (VFA) T(1)-mapping method in that (i) consistency between B(1) and T(1) maps is ensured (ii) the sampling scheme is T(1)-independent (iii) the noise bias and singularity, associated with using a linear form for the SPGR signal equation, is eliminated by using the full equation. The method is shown to yield accurate and robust results via simulations. Initial estimates of B(1) and T(1) values are obtained from three data points via simple computations and straight line approximations. Initial estimates of B(1) values, for a range of values, are shown to be accurate due to the proposed B(1) correction scheme. The accuracy and robustness of T(1) values is achieved via a non-linear fitting algorithm which includes a fourth data point sampled at high SNR. The MoS was validated by comparing resulting B(1) and T(1) maps with those obtained using other standard methods. Finally, the ability to obtain brain B(1) and T(1) maps using the MoS was demonstrated by in vivo experiments. The MoS is expected to perform well on other motion-free anatomical regions as well.
Copyright © 2012 John Wiley & Sons, Ltd.