An LC-MS/MS method was developed and validated for the simultaneous determination of deoxynivalenol, zearalenone, T-2-toxin, HT-2-toxin and metabolites, including 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, deoxynivalenol-3-glucoside, α-zearalenol, β-zearalenol, zearalenone-4-glucoside, α-zearalenol-4-glucoside, β-zearalenol-4-glucoside and zearalenone-4-sulfate in maize, wheat, oats, cornflakes and bread. Extraction was performed with acetonitrile/water/acetic acid (79/20/1, v/v/v) followed by a hexane defatting step. After filtration, the extract was evaporated and the residue was redissolved in mobile phase for injection. The mobile phase, which consisted of a mixture of methanol and water with 10 mM ammonium acetate, was adjusted to pH 3 with glacial acetic acid. A sample clean-up procedure was not included because of the low recoveries of free and masked mycotoxins and their differences in polarity. The method allowed the simultaneous determination of 13 Fusarium mycotoxins in a one-step chromatographic run using a Waters Acquity UPLC system coupled to a Quattro Premier XE mass spectrometer. The method was validated for several parameters such as linearity, apparent recovery, limit of detection, limit of quantification, precision, expanded measurement uncertainty and specificity. The limits of detection varied from 5 to 13 ng g⁻¹; those for the limit of quantification from 10 to 26 ng g⁻¹. The results of the performance characteristics of the developed LC-MS/MS method were in good agreement with the criteria mentioned in Commission Regulation (EC) No. 401/2006. Thirty samples of a variety of food and feed matrices were sampled and analysed between July 2010 and January 2011.