Structural evaluation of probucol nanoparticles coground with polyvinylpyrrolidone K17 and sodium dodecyl sulfate for 90 min was performed by solid-state nuclear magnetic resonance (NMR) spectroscopy and atomic force microscopy (AFM) with force-distance curve analysis. The results of solid-state NMR indicated that the cogrinding changed crystalline probucol to amorphous form. The number-averaged mean heights of probucol particles in the ground mixture (GM) suspension were determined by AFM to be 6 and 15 nm for freshly prepared and 24h-stored samples, respectively. Nucleation and the subsequent crystal growth might have occurred after the GM was dispersed in water. The presence of probucol nanocrystals and agglomeration of the primary probucol nanoparticles were recognized by AFM force-distance curve analysis. AFM could be a promising tool to evaluate the structure of nanoparticles as well as their agglomeration behavior in aqueous media.
Copyright © 2012 Elsevier B.V. All rights reserved.