Co-translational transport of polypeptides into the endoplasmic reticulum (ER) involves the Sec61 channel and additional components such as the ER lumenal Hsp70 BiP and its membrane-resident co-chaperone Sec63p in yeast. We investigated whether silencing the SEC61A1 gene in human cells affects co- and post-translational transport of presecretory proteins into the ER and post-translational membrane integration of tail-anchored proteins. Although silencing the SEC61A1 gene in HeLa cells inhibited co- and post-translational transport of signal-peptide-containing precursor proteins into the ER of semi-permeabilized cells, silencing the SEC61A1 gene did not affect transport of various types of tail-anchored protein. Furthermore, we demonstrated, with a similar knockdown approach, a precursor-specific involvement of mammalian Sec63 in the initial phase of co-translational protein transport into the ER. By contrast, silencing the SEC62 gene inhibited only post-translational transport of a signal-peptide-containing precursor protein.