We present a technique for measuring the propagation of a supersonic radiation front in low-density foam, where the lack of motion of the objects in its wake makes it difficult to determine its location. We illuminate a thin tracer foil embedded in the foam with a broadband x-ray source, and measure its changing absorption of these x rays as it ionizes. We record both spatial and spectral information of the heated tracer, and thus obtain its ionization state as a function of distance along the front propagation direction. We extrapolate this information to determine the state of the foam and the location of the radiation front. We present the experimental configuration used to test this technique at the Omega laser facility along with experimental results.