Cyclophosphamide and 4-hydroxycyclophosphamide pharmacokinetics in patients with glomerulonephritis secondary to lupus and small vessel vasculitis

Br J Clin Pharmacol. 2012 Sep;74(3):445-55. doi: 10.1111/j.1365-2125.2012.04223.x.

Abstract

Aims: Cyclophosphamide, the precursor to the active 4-hydroxycyclophosphamide, is used in active glomerulonephritis despite limited pharmacokinetics data. The pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide were evaluated. The influence of laboratory and pharmacogenomic covariates on pharmacokinetics was evaluated as a secondary aim.

Methods: Glomerulonephritis patients (n = 23) participated in a pharmacokinetic evaluation. Blood was serially collected and assayed for cyclophosphamide and 4-hydroxycyclophosphamide by LC/MS methods. Kidney function, serum albumin and polymorphisms in drug metabolism or transport genes were evaluated. Analyses included non-compartmental pharmacokinetics and parametric and non-parametric statistics.

Results: The mean area under the plasma concentration-time curve (AUC(0,∞)) data were 110,100 ± 42,900 ng ml(-1) h and 5388 ± 2841 ng ml(-1) h for cyclophosphamide and 4-hydroxycyclophosphamide, respectively. The mean metabolic ratio was 0.06 ± 0.04. A statistically significant relationship was found between increased serum albumin and increased half-life (0.584, P = 0.007, 95% CI 0.176, 0.820) and a borderline relationship with AUC(0,∞) (0.402, P = 0.079, 95% CI -0.064, 0.724) for 4-hydroxycyclophosphamide. Covariate relationships that trended toward significance for cyclophosphamide included decreased serum albumin and increased elimination rate constant (-0.427, P = 0.061, 95% CI 0.738, 0.034), increased urinary protein excretion and increased AUC(0,∞) (-0.392, P = 0.064, 95% CI -0.699 to 0.037), decreased C(max) (0.367, P = 0.085, 95% CI -0.067, 0.684) and decreased plasma clearance (-0.392, P = 0.064, 95% CI -0.699, 0.037). CYP2B6*9 variants vs. wildtype were found to have decreased elimination rate constant (P = 0.0005, 95% CI 0.033, 0.103), increased V(d) (P = 0.0271, 95% CI -57.5, -4.2) and decreased C(max) (P = 0.0176, 95% CI 0.696, 6179) for cyclophosphamide. ABCB1 C3435T variants had a borderline decrease in cyclophosphamide elimination rate constant (P = 0.0858; 95% CI -0.005, 0.102).

Conclusions: Pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide in patients with lupus nephritis and small vessel vasculitis are similar. Clinical and pharmacogenetic covariates alter disposition of cyclophosphamide and 4-hydroxycyclophosphamide. Clinical findings of worsened glomerulonephritis lead to increased exposure to cyclophosphamide vs. the active 4-hydroxycyclophosphamide, which could have relevance in terms of clinical efficacy. The CYP2B6*9 and ABCB1 C3435T polymorphisms alter the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide in glomerulonephritis.

Publication types

  • Controlled Clinical Trial
  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / genetics
  • Adult
  • Aged
  • Area Under Curve
  • Aryl Hydrocarbon Hydroxylases / genetics
  • Chromatography, Liquid
  • Cyclophosphamide / analogs & derivatives*
  • Cyclophosphamide / pharmacokinetics*
  • Cytochrome P-450 CYP2B6
  • Female
  • Glomerulonephritis / etiology
  • Glomerulonephritis / physiopathology*
  • Half-Life
  • Humans
  • Lupus Erythematosus, Systemic / complications
  • Male
  • Mass Spectrometry
  • Middle Aged
  • Oxidoreductases, N-Demethylating / genetics
  • Polymorphism, Single Nucleotide
  • Serum Albumin / metabolism
  • Vasculitis / complications

Substances

  • ABCB1 protein, human
  • ATP Binding Cassette Transporter, Subfamily B
  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • Serum Albumin
  • 4-hydroxycyclophosphamide
  • Cyclophosphamide
  • Aryl Hydrocarbon Hydroxylases
  • CYP2B6 protein, human
  • Cytochrome P-450 CYP2B6
  • Oxidoreductases, N-Demethylating