Background/aims: Endoplasmic reticulum (ER) stress and hypertriglyceridemia (HTG) have been implicated in acute pancreatitis (AP).
Methodology: For cellular model, rat exocrine acinar cells were preincubated with palmitic acid (0.05 or 0.1 mmol/L, 3 h) and stimulated with a cholecystokinin analog, CCK-8 (100 pmol/L, 30 min). For animal model, rats fed a high-fat diet to cause HTG and AP was induced by injection of caerulein (20 μg/kg). Injury to pancreatic cells was estimated by measuring amylase secretion, intracellular calcium concentration, apoptosis and histological changes. Expression of genes involved in ER stress-induced unfolded protein response (UPR) was monitored by RT-PCR and immunohistology.
Results: In CCK-8 stimulated rat acinar cells, preincubation with PA caused an increased secretion of amylase, a higher and prolonged accumulation of intracellular calcium and increased apoptosis. Rats on high-fat diet had significantly elevated serum triglyceride levels. Induction of AP led to increased apoptosis in pancreatic tissue on high-fat diet than controls. For favoring HTG, expression of UPR components, GRP78/Bip, XBP-1, GADD153/CHOP and caspase-12 was upregulated.
Conclusions: Levels of markers of AP pathogenesis and components of UPR were elevated in the presence of excess fatty acids in pancreatic acinar cells. HTG appears to aggravate ER-stress and pathogenesis of AP.