Genetically encoded sensors are powerful tools for imaging intracellular metabolites and signaling molecules. However, developing sensors is challenging because they require proteins that undergo conformational changes upon binding the desired target molecule. We describe an approach for generating fluorescent sensors based on Spinach, an RNA sequence that binds and activates the fluorescence of a small-molecule fluorophore. We show that these sensors can detect a variety of different small molecules in vitro and in living cells. These RNAs constitute a versatile approach for fluorescence imaging of small molecules and have the potential to detect essentially any cellular biomolecule.