Silicon precipitation inside a glass is an important technique for silicon photonics. We successfully precipitated silicon inside silicate glasses containing an Al metal film using femtosecond laser irradiation. First, the Al-inserted sandwiched glass was fabricated by the direct bonding method. The results of a tensile test indicated that the adhesive strength of the sandwich structure reached approximately 4 MPa. Next, femtosecond laser pulses were focused at the Al/glass interface in the sandwich structure. A transmission electron microscopy photograph at the focus of the laser showed that the Al particles were dispersed into the glass substrate to a depth of approximately 2 microm from the initial Al layer. In addition, Raman spectra indicated that silicon had formed at the interface between the glass and Al film after the laser irradiation. The morphology or the particle size of the precipitated silicon was successfully modified by changing the repetition rate or the pulse energy of the laser.