A coherent x-ray diffraction experiment was performed on an isolated colloidal crystal grain at the coherence beamline P10 at PETRA III. Using azimuthal rotation scans the three-dimensional (3D) scattered intensity from the sample in the far-field was measured. It includes several Bragg peaks as well as the coherent interference around these peaks. The analysis of the scattered intensity reveals the presence of plane defects in a single grain of the colloidal sample. We confirm these findings by model simulations. In these simulations we also analyze the experimental conditions required to phase the 3D diffraction pattern from a single colloidal grain. This approach has the potential to produce a high resolution image of the sample revealing its inner structure, with possible structural defects.