Raman spectroscopy is a powerful tool for investigating many fundamental properties of nanostructures, but extrinsic effects including background scattering and laser-induced heating can limit the analysis of intrinsic properties. A thin SiO2 dielectric coating is found to enhance the Raman signal from a single Ge nanowire by a factor of two as a result of wave interference. Consequently, the coated nanowire experiences less heating than a bare nanowire at equivalent signal intensities. The results demonstrate a simple and effective method to extend the limits of Raman analysis on single nanostructures and facilitate their characterization.