Previous studies suggested that activated c-Src promote the tyrosine phosphorylation of NMDA receptor subunit NR2A, and thus aggravate the injury induced by transient cerebral ischemia/reperfusion (I/R) in rat hippocampus CA1 region. In this study, we examined the effect of nitric oxide (NO) on the activation of c-Src and the tyrosine phosphorylation of NMDA receptor NR2A subunit. The results show that S-nitrosylation and the phosphorylation of c-Src were induced after cerebral I/R in rats, and administration of nNOS inhibitor 7-NI, nNOS antisense oligonucleotides and exogenous NO donor sodium nitroprusside diminished the increased S-nitrosylation and phosphorylation of c-Src during cerebral I/R. The cysteine residues of c-Src modified by S-nitrosylation are Cys489, Cys498, and Cys500. On the other hand, NMDAR antagonist MK-801 could attenuate the S-nitrosylation and activation of c-Src. Taken together, the S-nitrosylation of c-Src is provoked by NO derived from endogenous nNOS, which is activated by Ca(2+) influx from NMDA receptors, and promotes the auto-phosphorylation at tyrosines and further phosphorylates NR2A. The molecular mechanism we outlined here is a novel postsynaptic NMDAR-nNOS/c-Src-mediated signaling amplification, the 'NMDAR-nNOS → NO → SNO-c-Src → p-c-Src → NMDAR-nNOS' cycle, which presents the possibility as a potential therapeutic target for stroke treatment.