COPD is a heterogeneous disorder whose assessment is going to be increasingly multidimensional. Grading systems such as BODE (Body-Mass Index, Obstruction, Dyspnea, Exercise), mBODE (BODE modified in grading of walked distance), ADO (Age, Dyspnea, Obstruction) are proposed to assess COPD severity and outcome. Computed tomography (CT) is deemed to reflect COPD lung pathologic changes. We studied the relationship of multidimensional grading systems (MGS) with clinically determined COPD phenotypes and CT lung density. Seventy-two patients underwent clinical and chest x-ray evaluation, pulmonary function tests (PFT), 6-minute walking test (6MWT) to derive: predominant COPD clinical phenotype, BODE, mBODE, ADO. Inspiratory and expiratory CT was performed to calculate mean lung attenuation (MLA), relative area with density below-950 HU at inspiration (RAI(-950)), and below -910 HU at expiration (RAE(-910)). MGS, PFT, and CT data were compared between bronchial versus emphysematous COPD phenotype. MGS were correlated with CT data. The prediction of CT density by means of MGS was investigated by direct and stepwise multivariate regression. MGS did not differ in clinically determined COPD phenotypes. BODE was more closely related and better predicted CT findings than mBODE and ADO; the better predictive model was obtained for CT expiratory data; stepwise regression models of CT data did not include 6MWT distance; the dyspnea score MRC was included only to predict RA-950 and RA-910 which quantify emphysema extent. BODE reflect COPD severity better than other MGS, but not its clinical heterogeneity. 6MWT does not significantly increase BODE predictivity of CT lung density changes.