Targeted gene delivery provides enormous potential for clinical treatment of many incurable diseases. Liposomes formulated with targeting ligands have been tested extensively both in vitro and in vivo, and many studies have strived to identify more efficacious ligands. However, the environment of the ligand within the delivery vehicle is generally not considered, and this study assesses the effect of ligand microenvironment by utilizing a lipoplex possessing a cholesterol domain. Our recent work has shown that the presence of the targeting ligand within the cholesterol domain promotes more productive transfection in cultured cells. In the present study, lipoplexes having the identical lipid composition were formulated with different conjugates of the folate ligand such that the ligand was included in, or excluded from, the cholesterol domain. The effect of locating the ligand within the cholesterol domain was then tested in a xenograft tumor model in mice. Lipoplexes that included the ligand within the cholesterol domain showed significantly higher luciferase expression and plasmid accumulation in tumors as compared to lipoplexes in which the ligand was excluded from the domain. These results demonstrate that the microenvironment of the ligand can affect gene delivery to tumors, and show that ligand-mediated delivery can be enhanced by locating targeting ligands within a cholesterol domain.
Copyright © 2012 Elsevier B.V. All rights reserved.