The development of heart failure (HF) is a complex process that can be initiated by multiple etiologies. Identifying common functional modules associated with HF is a challenging task. Here, we developed a systems method to identify these common functional modules by integrating multiple expression profiles, protein interactions from four species, gene function annotations, and text information. We identified 1439 consistently differentially expressed genes (CDEGs) across HF with different etiologies by applying three meta-analysis methods to multiple HF-related expression profiles. Using a weighted human interaction network constructed by combining interaction data from multiple species, we extracted 60 candidate CDEG modules. We further evaluated the functional relevance of each module by using expression, interaction network, functional annotations, and text information together. Finally, five functional modules with significant biological relevance were identified. We found that almost half of the genes in these modules are hubs in the weighted network, and that these modules can accurately classify HF patients from healthy subjects. We also identified many significantly enriched biological processes that contribute to the pathophysiology of HF, including two new ones, RNA splicing and vesicle-mediated protein transport. In summary, we proposed a novel framework to analyze common functional modules related to HF with different etiologies. Our findings provide important insights into the complex mechanism of HF. Further biological experimentations should be required to validate these novel biological processes.
Copyright © 2012 Elsevier B.V. All rights reserved.