Since nano-sized particles (NPs) are increasingly used in various fields of innovative biomedicine and industrial technologies, it is of importance to identify their potential human health risk. We investigated whether ROS-induced mitochondrial DNA damage is the mode of action of titanium dioxide-NPs (TiO2-NPs; ≤20 nm) to induce cytotoxic and genotoxic effects in human HaCaT keratinocytes in vitro. We showed that TiO2-NPs accumulate at the cell surface and are taken up by endocytosis. Micronucleus (MN) formation was found to be significantly maximal increased 24 h after treatment with 10 μg/ml and 48 h after treatment with 5 μg/ml TiO2-NPs about 1.8-fold respectively 2.2-fold of control. Mitochondrial DNA damage measured as "common deletion" was observed to be significantly 14-fold increased 72 h after treatment with 10 μg/ml TiO2-NPs when compared to control. Four hours after treatment with 5 and 50 μg/ml TiO2-NPs the level of ROS in HaCaT cells was found to be significantly increased about 7.5-fold respectively 16.7-fold of control. In conclusion, for the first time we demonstrate the induction of the mitochondrial "common deletion" in HaCaT cells following exposure to TiO2-NPs, which strongly suggests a ROS-mediated cytotoxic and genotoxic potential of NPs. However, the effects of the modification of TiO2-NPs, such as agglomeration, size distribution pattern and exposure time have to be further critically examined.
Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.