We investigated the effects of a novel compound, SC-2001, on hepatocellular carcinoma (HCC). SC-2001, which is structurally related to the Mcl-1 inhibitor obatoclax, showed better antitumor effects than obatoclax in HCC cell lines, including HepG2, PLC5 and Huh-7. Like obatoclax, SC-2001 inhibited the protein-protein interactions between Mcl-1 and Bak. However, SC-2001 downregulated the protein levels of Mcl-1 by reducing its transcription whereas obatoclax had no significant effect on Mcl-1 expression. As Mcl-1 is regulated by signal transducers and activators of transcription 3 (STAT3), we found that SC-2001 downregulated the phosphorylation of STAT3 (Tyr 705) and subsequently inhibited transcriptional activities of STAT3 in a dose-dependent manner. In addition to Mcl-1, STAT3-regulated proteins, including survivin and cyclin D1, were also repressed by SC-2001. Notably, SC-2001 reduced IL-6-induced STAT3 activation in HepG2 and PLC5 cells. Ectopic expression of STAT3 abolished the prominent apoptotic death in SC-2001-treated PLC5 cells, indicating that STAT3 is indispensable in mediating the effects of SC-2001. Importantly, SC-2001 enhanced the expression of SHP1, a negative regulator of STAT3. Inhibition of SHP-1 by either specific inhibitor or small interference RNA reduced the apoptotic effects of SC-2001, indicating that SHP-1 plays a key role in mediating SC2001-induced cell death. SC-2001 enhanced the activity of SHP-1 in all tested HCC cells including HepG2, PLC5 and Huh-7. Finally, SC-2001 reduced PLC5 tumor growth, downregulated p-STAT3 and upregulated SHP-1 expression and activity in vivo. In conclusion, our results suggest that SC-2001 induces apoptosis in HCC, and that this effect is mediated through SHP-1-dependent STAT3 inactivation.
Copyright © 2012. Published by Elsevier Ireland Ltd.