An integrative analysis of transcriptome and proteome was performed to identify differential genes/proteins of a red-flesh sweet orange Cara Cara in comparison with a common cultivar Newhall at ripening stages. At the transcript level, gene expression was measured with Massively Parallel Signature Sequencing (MPSS), and 629 genes of these two sweet orange cultivars differed by two fold or more (FDR<0.001). At the protein level, a combination of 2DE and MALDI-TOF-TOF MS identified 48 protein spots differed in relative abundance (P<0.05). The data obtained from comparing transcriptome with proteome showed a poor correlation, suggesting the necessity to integrate both transcriptomic and proteomic approaches in order to get a comprehensive molecular characterization. Function analysis of the differential genes/proteins revealed that a set of candidates was associated with carotenoid biosynthesis and the regulation. Overall, some intriguing genes/proteins were previously unrecognized related with the formation of red-flesh trait, which provided new insights into molecular processes regulating lycopene accumulation in a red-flesh sweet orange. In addition, some genes/proteins were found to be different in expression patterns between the Cara Cara and another red-flesh sweet orange Hong Anliu, and their potential roles were further discussed in the present study.
Copyright © 2012 Elsevier B.V. All rights reserved.