Domain communication in the dynamical structure of human immunodeficiency virus 1 protease

Proc Natl Acad Sci U S A. 1990 Nov;87(22):8864-8. doi: 10.1073/pnas.87.22.8864.

Abstract

A dynamical model for the structure of the human immunodeficiency virus 1 (HIV-1) protease dimer in aqueous solution has been developed on the basis of molecular dynamics simulation. The model provides an accurate account of the crystal geometry and also a prediction of the structural reorganization expected to occur in the protein in aqueous solution compared to the crystalline environment. Analysis of the results by means of dynamical cross-correlation coefficients for atomic displacements indicates that domain-domain communication is present in the protein in the form of a molecular "cantilever" and is likely to be involved in enzyme function at the molecular level. The dynamical structure also suggests information that may ultimately be useful in understanding and further development of specific inhibitors of HIV-1 protease.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Binding Sites
  • Crystallography
  • HIV Protease / ultrastructure*
  • Hydrogen Bonding
  • Molecular Sequence Data
  • Motion
  • Protein Conformation
  • Water
  • X-Ray Diffraction

Substances

  • Water
  • HIV Protease

Associated data

  • PIR/UNKNOWN