Purpose: Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are rare group of tumors with a wide spectrum of clinical behavior. However, there are no known clinically relevant biomarkers to predict metastasis.
Experimental design: To investigate differential gene expression signatures of metastatic vs non-metastatic NETs, we studied cell cycle regulatory genes in 19 metastatic and 22 non-metastatic colorectal NETs by PCR arrays. Immunohistochemistry (IHC) and quantitative real-time RT-PCR were performed to verify the results and another set of 38 GEP-NETs were further studied for validation.
Results: We first delineated six candidate genes for metastasis including ATM, CCND2, RBL2, CDKN3, CCNB1, and GTSE1. ATM was negatively correlated with metastatic NETs (p<0.001) with more than 2-fold change compared to non-metastatic NETs. Overexpression of ATM protein by IHC was strongly correlated with high ATM mRNA levels and low Ki-67 labeling index. Patients with ATM-negativity by IHC showed significantly decreased overall survival than patients with ATM-positivity (median OS, metastatic vs non-metastatic NETs; 2.7 years vs not reached; p = 0.003) and 85.7% of metastatic NETs were ATM-negative. In another validation set of GEP-NETs, decreased mRNA of ATM gene was associated with metastasis and remained significant (p = 0.023).
Conclusions: ATM down-regulation was strongly associated with metastatic NETs when compared with non-metastatic NETs and ATM may be a potential predictive marker for metastasis as well as a novel target in metastatic GEP-NETs.