Inhibition of constitutively activated phosphoinositide 3-kinase/AKT pathway enhances antitumor activity of chemotherapeutic agents in breast cancer susceptibility gene 1-defective breast cancer cells

Mol Carcinog. 2013 Sep;52(9):667-75. doi: 10.1002/mc.21905. Epub 2012 Apr 4.

Abstract

Loss or decrease of wild type BRCA1 function, by either mutation or reduced expression, has a role in hereditary and sporadic human breast and ovarian cancers. We report here that the PI3K/AKT pathway is constitutively active in BRCA1-defective human breast cancer cells. Levels of phospho-AKT are sustained even after serum starvation in breast cancer cells carrying deleterious BRCA1 mutations. Knockdown of BRCA1 in MCF7 cells increases the amount of phospho-AKT and sensitizes cells to small molecule protein kinase inhibitors (PKIs) targeting the PI3K/AKT pathway. Restoration of wild type BRCA1 inhibits the activated PI3K/AKT pathway and de-sensitizes cells to PKIs targeting this pathway in BRCA1 mutant breast cancer cells, regardless of PTEN mutations. In addition, clinical PI3K/mTOR inhibitors, PI-103, and BEZ235, showed anti-proliferative effects on BRCA1 mutant breast cancer cell lines and synergism in combination with chemotherapeutic drugs, cisplatin, doxorubicin, topotecan, and gemcitabine. BEZ235 synergizes with the anti-proliferative effects of gemcitabine by enhancing caspase-3/7 activity. Our results suggest that the PI3K/AKT pathway can be an important signaling pathway for the survival of BRCA1-defective breast cancer cells and pharmacological inhibition of this pathway is a plausible treatment for a subset of breast cancers.

Keywords: BRCA1-defective breast cancer; PI3K/AKT pathway; chemotherapeutic agents; constitutive activation; kinase inhibitor; synergism.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • BRCA1 Protein / deficiency*
  • BRCA1 Protein / genetics
  • BRCA1 Protein / metabolism
  • Breast Neoplasms / drug therapy*
  • Breast Neoplasms / enzymology
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism*
  • Caspase 3 / genetics
  • Caspase 3 / metabolism
  • Caspase 7 / genetics
  • Caspase 7 / metabolism
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Female
  • Humans
  • MCF-7 Cells
  • Mutation / genetics
  • PTEN Phosphohydrolase / genetics
  • PTEN Phosphohydrolase / metabolism
  • Phosphatidylinositol 3-Kinases / genetics
  • Phosphatidylinositol 3-Kinases / metabolism
  • Phosphoinositide-3 Kinase Inhibitors*
  • Phosphorylation / drug effects
  • Phosphorylation / genetics
  • Protein Kinase Inhibitors / pharmacology
  • Proto-Oncogene Proteins c-akt / antagonists & inhibitors*
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism
  • Signal Transduction / drug effects*
  • Signal Transduction / genetics
  • TOR Serine-Threonine Kinases / antagonists & inhibitors
  • TOR Serine-Threonine Kinases / genetics
  • TOR Serine-Threonine Kinases / metabolism

Substances

  • Antineoplastic Agents
  • BRCA1 Protein
  • BRCA1 protein, human
  • Phosphoinositide-3 Kinase Inhibitors
  • Protein Kinase Inhibitors
  • MTOR protein, human
  • Proto-Oncogene Proteins c-akt
  • TOR Serine-Threonine Kinases
  • PTEN Phosphohydrolase
  • PTEN protein, human
  • Caspase 3
  • Caspase 7