The critical periods of axial skeletal development in rats and mice have been well characterized, however the timing of skeletal development in rabbits is not as well known. It is important to have a more precise understanding of this timing of axial skeletal development in rabbits due to the common use of this species in standard nonclinical studies to assess embryo-fetal developmental toxicity. Hydroxyurea, a teratogen known to induce a variety of fetal skeletal malformations, was administered to New Zealand White rabbits as a single dose (500 mg/kg) on individual days during gestation (gestation day, GD 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 19) and fetal external, visceral, and skeletal morphology was examined following cesarean sections on GD 29. A wide range of fetal skeletal effects was observed following hydroxyurea treatment, with a progression of malformations from anterior to posterior structures over time, as well as from proximal to distal structures over time. The sensitive window of axial skeletal development was determined to be GD 8 to 13, while disruption of appendicular and cranio-facial skeletal development occurred primarily from GD 11 to 16 and GD 11 to 12, respectively. The results of this study provide a better understanding of the critical developmental window for different segments of the rabbit skeleton, which will aid in the design of window studies to investigate teratogenicity in rabbits.
© 2012 Wiley Periodicals, Inc.