Background: Regional myocardial deformation patterns are important in a variety of cardiac diseases, including stress-induced cardiomyopathy. Velocity-vector-based imaging is a speckle-tracking echocardiography (STE)-based algorithm that has been shown to allow in-depth cardiac phenotyping in humans. Regional posterior wall myocardial dysfunction occurs during severe isoprenaline stress in mice. We have previously shown that regional posterior wall end-systolic transmural strain decreases after severe isoprenaline toxicity in mice. We hypothesize that STE can detect and further quantify these perturbations.
Methods and results: Twenty-three mice underwent echocardiographic examination using the VEVO2100 system. Regional transmural radial strain and strain rate were calculated in both parasternal short-axis and parasternal long-axis cine loops using the VisualSonics VEVO 2100 velocity vector imaging (VVI) STE algorithm. Eight C57BL/6 mice underwent baseline echocardiographic examination using the VisualSonics VEVO 770 system, which can acquire >1,000 frames/s cine loops. In a parasternal short-axis cine loop, the heart was divided into six segments, and regional fractional wall thickening (FWT) was assessed manually. The same protocols were also performed 90 minutes post 400 mg/kg intraperitoneally isoprenaline. Regional myocardial FWT is uniform at baseline but increases significantly in anterolateral segments, whereas it decreases significantly in posterior segments (P < 0.05). A similar pattern is seen using the VVI algorithm although the variance is larger, and differences are smaller and fail to reach significance.
Conclusions: VVI is less sensitive in detecting regional perturbations in myocardial function than manual tracing, possibly due to the low frame rate in the cine loops used.
© 2012, Wiley Periodicals, Inc.