Weak genetic relationship between trabecular bone morphology and obesity in mice

Bone. 2012 Jul;51(1):46-53. doi: 10.1016/j.bone.2012.03.031. Epub 2012 Apr 6.

Abstract

Obesity, in addition to being associated with metabolic diseases, such as diabetes, has also been found to lower the risk of osteoporotic fractures. The relationship between obesity and bone trabecular structure is complex, involving responses to mechanical loading and the effects of adipocyte-derived hormones, both directly interacting with bone tissue and indirectly through central nervous system signaling. Here we examine the effects of sex, a high fat diet, and genetics on the trabecular density and structure of the lumbar and caudal vertebra and the proximal tibia along with body weight, fat pad weight, and serum leptin levels in a murine obesity model, the LGXSM recombinant inbred (RI) mouse strains. The sample included 481 mice from 16 RI strains. We found that vertebral trabecular density was higher in males while the females had higher tibial trabecular density. The high fat diet led to only slightly higher trabecular density in both sexes despite its extreme effects on obesity and serum leptin levels. Trait heritabilities are moderate to strong and genetic correlations among trabecular features are high. Most genetic variation contrasts strains with large numbers of thick, closely-spaced, highly interconnected, plate-like trabeculae with a high bone volume to total volume ratio against strains displaying small numbers of thin, widely-spaced, sparsely connected, rod-like trabeculae with a low bone volume to total volume ratio. Genetic correlations between trabecular and obesity-related traits were low and not statistically significant. We mapped trabecular properties to 20 genomic locations. Only one-quarter of these locations also had effects on obesity. In this population obesity has a relatively minor effect on trabecular bone morphology.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Bone Density / genetics
  • Bone Density / physiology
  • Bone and Bones / metabolism*
  • Female
  • Male
  • Mice
  • Obesity / genetics*
  • Quantitative Trait Loci / genetics
  • Tibia / metabolism