Interaction between Ca(2+) channel blockers and isoproterenol on L-type Ca(2+) current in canine ventricular cardiomyocytes

Acta Physiol (Oxf). 2012 Sep;206(1):42-50. doi: 10.1111/j.1748-1716.2012.02448.x. Epub 2012 May 15.

Abstract

Aim: The aim of this work was to study antagonistic interactions between the effects of various types of Ca(2+) channel blockers and isoproterenol on the amplitude of L-type Ca(2+) current in canine ventricular cells.

Methods: Whole-cell version of the patch clamp technique was used to study the effect of isoproterenol on Ca(2+) current in the absence and presence of Ca(2+) channel-blocking agents, including nifedipine, nisoldipine, diltiazem, verapamil, CoCl(2) and MnCl(2) .

Results: Five micromolar Nifedipine, 1 μM nisoldipine, 10 μM diltiazem, 5 μM verapamil, 3 mM CoCl(2) and 5 mM MnCl(2) evoked uniformly a 90-95% blockade of Ca(2+) current in the absence of isoproterenol. Isoproterenol (100 nM) alone increased the amplitude of Ca(2+) current from 6.8 ± 1.3 to 23.7 ± 2.2 pA/pF in a reversible manner. Isoproterenol caused a marked enhancement of Ca(2+) current even in the presence of nifedipine, nisoldipine, diltiazem and verapamil, but not in the presence of CoCl(2) or MnCl(2) .

Conclusion: The results indicate that the action of isoproterenol is different in the presence of organic and inorganic Ca(2+) channel blockers. CoCl(2) and MnCl(2) were able to fully prevent the effect of isoproterenol on Ca(2+) current, while the organic Ca(2+) channel blockers failed to do so. This has to be born in mind when the effects of organic Ca(2+) channel blockers are evaluated either experimentally or clinically under conditions of increased sympathetic tone.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / metabolism
  • Calcium Channel Blockers / pharmacology*
  • Calcium Channels, L-Type / metabolism*
  • Cells, Cultured
  • Dogs
  • Drug Interactions
  • Female
  • Heart Ventricles / cytology*
  • Isoproterenol / pharmacology*
  • Male
  • Myocytes, Cardiac / drug effects*

Substances

  • Calcium Channel Blockers
  • Calcium Channels, L-Type
  • Isoproterenol
  • Calcium