Apart from microRNAs, little is known about the regulation of expression of non-coding RNAs in cancer. We investigated whether small nucleolar RNAs (snoRNAs) accumulation displayed specific signatures in acute myeloblastic and acute lymphoblastic leukemias. Using microarrays and high-throughput quantitative PCR (qPCR), we demonstrate here that snoRNA expression patterns are negatively altered in leukemic cells compared with controls. Interestingly, a specific signature was found in acute promyelocytic leukemia (APL) with ectopic expression of SNORD112-114 snoRNAs located at the DLK1-DIO3 locus. In vitro experiments carried out on APL blasts demonstrate that transcription of these snoRNAs was lost under all-trans retinoic acid-mediated differentiation and induced by enforced expression of the PML-RARalpha fusion protein in negative leukemic cell lines. Further experiments revealed that the SNORD114-1 (14q(II-1)) variant promoted cell growth through cell cycle modulation; its expression was implicated in the G0/G1 to S phase transition mediated by the Rb/p16 pathways. This study thus reports three important observations: (1) snoRNA regulation is different in normal cells compared with cancer cells; (2) a relationship exists between a chromosomal translocation and expression of snoRNA loci; and (3) snoRNA expression can affect Rb/p16 cell cycle regulation. Taken together, these data strongly suggest that snoRNAs have a role in cancer development.