We presented a novel experimental aneurysm model for studies in left ventricular (LV) reconstruction techniques and assessed LV function. In eight pigs, the LV radius and geometry were enlarged surgically on the beating heart by inserting an aortic allograft construct. Haemodynamics and LV dimensions were assessed by echocardiography at baseline and under dobutamine stress. Surgery was successfully performed without lethal blood loss or arrhythmias. LV end-diastolic and end-systolic short-axis areas increased from 13.0 ± 1.7 to 17.0 ± 4.3 cm(2) (P = 0.001) and from 4.0 ± 0.9 to 13.0 ± 2.6 cm(2) (P = 0.001), respectively. Stroke volume decreased from 56 ± 11 to 33 ± 16 ml (P = 0.001). Incremental dobutamine infusion concurred with a biphasic response on fractional area shortening. Mitral valve insufficiency ranging from grades 2 to 4 was observed. In the pig, a novel, reproducible aneurysm model for acute cardiac dysfunction was created on the beating heart. Innovative (surgical) strategies for (staged) reconfiguration of the ventricle, e.g. adjustable Dor procedures and stepwise volume restraining cardiac support devices, can be tested for efficacy using this acute model.