The HIV epidemic continues to be the most severe public health problem and concern within USA and across the globe. In spite of the highly active antiretroviral therapy, HIV infected subjects experience major neurological complications that range from HIV associated dementia to moderate neurocognitive and motor impairments collectively termed as HIV associated neurocognitive disorders (HAND). Astrocytes play an important role in the neuropathogenesis of HAND. Further, in the recent years it has been shown that oxidative stress plays a major role in the neuropathogenesis of HAND. Nuclear factor erythroid 2-related factor 2 (Nrf2), a leucine zipper redox-sensitive transcription factor, is an important regulator of cell survival and adaptive mechanisms and has been shown to possess a protective role in a variety of neurological and inflammatory disorders. Earlier we have shown that Nrf2 is upregulated in response to HIV-1 gp120 and such upregulation of Nrf2 may be a protective mechanism against the HIV-induced oxidative stress. We hypothesize that Nrf2-mediated antioxidant pathways are important in regulating the HIV-induced oxidative stress and that the disruption of Nrf2 makes the cells more susceptible to HIV gp120-induced deleterious effects. Our results indicate that when astrocytes are exposed to gp120 there is an increase in the expression of NOX2, a subunit of NADPH oxidase, and also an upregulated expression of nuclear factor kappa B, tumor necrosis factor-α (TNF-α) and matrix metalloproteinase-9 (MMP-9). However, the degree of expression was significantly higher in those cells where Nrf2 was silenced by siRNA. Taken together, these results suggest a possible protective role of Nrf2 in regulating the levels of pro-oxidative and pro-inflammatory molecules in HAND.