Fluorescence imaging technique has been used for imaging of biological cells and tissues in vivo. The Cd-free luminescent quantum dots conjugating with a cancer targeting ligand has been taken as a promising biocompatibility and low cytotoxicity system for targeted cancer imaging. This work reports the synthesis of fluorescent-doped core/shell quantum dots of water-soluble manganese-doped zinc sulfide. Quantum dots of manganese-doped zinc sulfide were prepared by nucleation doping strategy, with 3-mercaptopropionic acid as stabilizer at 90 in aqueous solution. The manganese-doped zinc sulfide nanoparticles exhibit strong orange fluorescence under UV irradiation, resistance to photo-bleaching, and low-cytotoxicity to HeLa cells. The structure and optical properties of nanoparticles were characterized by scanning electron microscope, X-ray diffraction, dynamic light scattering, and photoluminescence emission spectroscopy. Manganese-doped zinc sulfide nanoparticles conjugated with folic acid using 2,2'-(ethylenedioxy)-bis-(ethylamine) as the linker. The covalent binding of both 2,2'-(ethylenedioxy)-bis-(ethylamine) and folic acid on the surface of manganese-doped zinc sulfide nanoparticles probed by Fourier transform infrared spectroscopy detection. Furthermore, in vitro cytotoxicity assessment of manganese-doped zinc sulfide-folic acid probes use HeLa cells. The obtained fluorescent probes (manganese-doped zinc sulfide) were used for tumor targeting and imaging in vivo. The manganese-doped zinc sulfide-folic acid fluorescent probes which targeting the tumor cells in the body of nude mouse tumor model would emit orange fluorescence, when exposed to a 365 nm lamp. We investigate the biodistribution of the manganese-doped zinc sulfide-folic acid fluorescent probes in tumor mouse model by measuring zinc concentration in tissues. These studies demonstrate the practicality of manganese-doped zinc sulfide-folic acid fluorescent probes as promising platform for tumor targeting and imaging in vivo.
Keywords: ZnS:Mn/ZnS nanoparticles; cytotoxicity; fluorescence; in vivo; tumor targeting and imaging.