A series of starburst oligomers (T1-T3) that contained a fully diarylmethene-bridged triphenylamine core and oligofluorene arms were designed and synthesized through Suzuki cross-coupling reactions. Their thermal, photophysical, and electrochemical properties were also investigated. These materials showed high glass transition, in the range of 123-129 °C, and good film-forming abilities. They displayed deep-blue emission both in solution and as thin films. Solution-processed devices based on these oligomers exhibited highly efficient deep-blue electroluminescence and the device performances were significantly enhanced with the extension of the oligofluorene arms. The double-layered device that contained T3 as an emitter showed a maximum current efficiency of 3.83 cd A(-1) and a maximum external quantum efficiency of 4.19% with CIE coordinates of (0.16, 0.09), which are among the highest values for undoped deep-blue OLEDs that are based on solution-processable starburst oligomers.
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.