In laser-plasma experiments, we observed that ion acceleration from the Coulomb explosion of the plasma channel bored by the laser is prevented when multiple plasma instabilities, such as filamentation and hosing, and nonlinear coherent structures (vortices or postsolitons) appear in the wake of an ultrashort laser pulse. The tailoring of the longitudinal plasma density ramp allows us to control the onset of these instabilities. We deduced that the laser pulse is depleted into these structures in our conditions, when a plasma at about 10% of the critical density exhibits a gradient on the order of 250 μm (Gaussian fit), thus hindering the acceleration. A promising experimental setup with a long pulse is demonstrated enabling the excitation of an isolated coherent structure for polarimetric measurements and, in further perspectives, parametric studies of ion plasma acceleration efficiency.