Suppression of the coffee ring effect by hydrosoluble polymer additives

ACS Appl Mater Interfaces. 2012 May;4(5):2775-80. doi: 10.1021/am300423p. Epub 2012 Apr 30.

Abstract

A simple and novel method has been demonstrated for avoiding coffee ring structure based on hydrosoluble polymer additives during droplet evaporation. The polymer additives lead to the motion of the contact line (CL) resulted from the viscosity and Marangoni effect. The viscosity provides a large resistance to the radially outward flow. It results in a small amount of spheres deposited at droplet edge, which do not facilitate the pinning of the CL. The Marangoni effect resulted from the variation of polymer concentration at droplet edge during droplet evaporation contributes to the motion of the CL. Thus, uniform and ordered macroscale SiO(2) microspheres deposition is achieved. What's more, the coffee ring effect can be eliminated by different hydrosoluble polymer. This method will be applicable to a wide of aqueous system and will be of great significance for extensive applications of droplet deposition in biochemical assays and material deposition.

Publication types

  • Research Support, Non-U.S. Gov't