The human brain undergoes protracted development, with dramatic changes in expression and regulation of emotion from childhood to adulthood. The amygdala is a brain structure that plays a pivotal role in emotion-related functions. Investigating developmental characteristics of the amygdala and associated functional circuits in children is important for understanding how emotion processing matures in the developing brain. The basolateral amygdala (BLA) and centromedial amygdala (CMA) are two major amygdalar nuclei that contribute to distinct functions via their unique pattern of interactions with cortical and subcortical regions. Almost nothing is currently known about the maturation of functional circuits associated with these amygdala nuclei in the developing brain. Using intrinsic connectivity analysis of functional magnetic resonance imaging data, we investigated developmental changes in functional connectivity of the BLA and CMA in twenty-four 7- to 9-y-old typically developing children compared with twenty-four 19- to 22-y-old healthy adults. Children showed significantly weaker intrinsic functional connectivity of the amygdala with subcortical, paralimbic, and limbic structures, polymodal association, and ventromedial prefrontal cortex. Importantly, target networks associated with the BLA and CMA exhibited greater overlap and weaker dissociation in children. In line with this finding, children showed greater intraamygdala connectivity between the BLA and CMA. Critically, these developmental differences were reproducibly identified in a second independent cohort of adults and children. Taken together, our findings point toward weak integration and segregation of amygdala circuits in young children. These immature patterns of amygdala connectivity have important implications for understanding typical and atypical development of emotion-related brain circuitry.