Louse-borne diseases are prevalent in the homeless, and body louse eradication has thus far been unsuccessful in this population. We aim to develop a rapid and robust genotyping method usable in large field-based clinical studies to monitor permethrin resistance in the human body louse Pediculus humanus corporis. We assessed a melting curve analysis genotyping method based on real-time PCR using hybridization probes to detect the M815I-T917I-L920F knockdown resistance (kdr) mutation in the paraorthologous voltage-sensitive sodium channel (VSSC) α subunit gene, which is associated with permethrin resistance. The 908-bp DNA fragment of the VSSC gene, encoding the α subunit of the sodium channel and encompassing the three mutation sites, was PCR sequenced from 65 lice collected from a homeless population. We noted a high prevalence of the 3 indicated mutations in the body lice collected from homeless people (100% for the M815I and L920F mutations and 56.73% for the T917I mutation). These results were confirmed by melting curve analysis genotyping, which had a calculated sensitivity of 100% for the M815I and T917I mutations and of 98% for the L920F mutation. The specificity was 100% for M815I and L920F and 96% for T917I. Melting curve analysis genotyping is a fast, sensitive, and specific tool that is fully compatible with the analysis of a large number of samples in epidemiological surveys, allowing the simultaneous genotyping of 96 samples in just over an hour (75 min). Thus, it is perfectly suited for the epidemiological monitoring of permethrin resistance in human body lice in large-scale clinical studies.