Vector-based miR-15a/16-1 plasmid inhibits colon cancer growth in vivo

Cell Biol Int. 2012 Aug 1;36(8):765-70. doi: 10.1042/CBI20110404.

Abstract

miR-15 (microRNA 15) and miR-16 are frequently deleted or down-regulated in many cancer cell lines and various tumour tissues, suggesting that miR-15a/16-1 plays important roles in tumour progression and might be a method for cancer treatment. We have developed a vector-based plasmid to explore the anti-tumour efficacy of miR-15a/16-1 in colon cancer in vivo. It is proposed that miR-15a and miR-16-1 target cyclin B1 (CCNB1), which associates with several tumorigenic features such as survival and proliferation. The levels of miR-15a and miR-16-1 in colon cancer cells were inversely correlated with CCNB1 expression, and there was consensus between miR-15a/16-1 and CCNB1 mRNA sequences by analysing homology. Vector-based miR-15a/16-1 expression plasmid was constructed and transfected into HCT 116 and SW620 colon cancer cells in vitro. The effects produced on cell viability and angiogenesis were analysed using flow cytometric analysis, colony formation analysis and tube formation analysis. CCNB1 expression down-regulation was checked by Western blotting. Systemic delivery of miR-15a/16-1 plasmids encapsulated in cationic liposome led to a significant inhibition of subcutaneous tumour growth and angiogenesis in tumour tissues, whereas no effects were observed with liposome carrying the non-specific plasmid. In summary, miR-15a/16-1 has been applied in colon cancer treatment in vivo, and resulted in effective colon tumour xenografts growth arrest and angiogenesis decrease. These findings suggest that systemic delivery of vector-based miR-15a/16-1 expression plasmid can be an approach to colon cancer therapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3' Untranslated Regions
  • Animals
  • Cell Cycle Checkpoints
  • Cell Line, Tumor
  • Cell Proliferation
  • Colonic Neoplasms / metabolism
  • Colonic Neoplasms / pathology*
  • Cyclin B1 / antagonists & inhibitors
  • Cyclin B1 / genetics
  • Cyclin B1 / metabolism
  • Down-Regulation
  • Female
  • Genetic Vectors / genetics
  • Genetic Vectors / metabolism
  • HCT116 Cells
  • Human Umbilical Vein Endothelial Cells
  • Humans
  • Mice
  • Mice, Nude
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*
  • Plasmids / genetics
  • Plasmids / metabolism*
  • RNA Interference
  • Transplantation, Heterologous

Substances

  • 3' Untranslated Regions
  • CCNB1 protein, human
  • Cyclin B1
  • MIRN15 microRNA, human
  • MIRN16 microRNA, human
  • MicroRNAs