Identification of O-linked β-D-N-acetylglucosamine-modified proteins from Arabidopsis

Methods Mol Biol. 2012:876:33-45. doi: 10.1007/978-1-61779-809-2_3.

Abstract

The posttranslational modification of proteins with O-linked β-D: -N-acetylglucosamine (O-GlcNAc) on serine and threonine residues occurs in all animals and plants. This modification is dynamic and ubiquitous, and regulates many cellular processes, including transcription, signaling and cytokinesis and is associated with several diseases. Cycling of O-GlcNAc is tightly regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Plants have two OGTs, SPINDLY (SPY) and SECRET AGENT (SEC); disruption of both causes embryo lethality. Despite O-GlcNAc modification of proteins being discovered more than 20-years ago, identification and mapping of protein GlcNAcylation is still a challenging task. Here we describe the use of lectin affinity chromatography combined with electron transfer dissociation mass spectrometry to enrich and to detect O-GlcNAc modified peptides from Arabidopsis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acetylglucosamine / chemistry*
  • Arabidopsis Proteins / chemistry*
  • Chromatography, High Pressure Liquid
  • Mass Spectrometry

Substances

  • Arabidopsis Proteins
  • Acetylglucosamine