Bifidobacteria are commonly used as probiotics in dairy foods. Select bifidobacterial species are also early colonizers of the breast-fed infant colon; however, the mechanism for this enrichment is unclear. We previously showed that Bifidobacterium longum subsp. infantis is a prototypical bifidobacterial species that can readily utilize human milk oligosaccharides as the sole carbon source. MS-based glycoprofiling has revealed that numerous B. infantis strains preferentially consume small mass oligosaccharides, abundant in human milks. Genome sequencing revealed that B. infantis possesses a bias toward genes required to use mammalian-derived carbohydrates. Many of these genomic features encode enzymes that are active on milk oligosaccharides including a novel 40-kb region dedicated to oligosaccharide utilization. Biochemical and molecular characterization of the encoded glycosidases and transport proteins has further resolved the mechanism by which B. infantis selectively imports and catabolizes milk oligosaccharides. Expression studies indicate that many of these key functions are only induced during growth on milk oligosaccharides and not expressed during growth on other prebiotics. Analysis of numerous B. infantis isolates has confirmed that these genomic features are common among the B. infantis subspecies and likely constitute a competitive colonization strategy used by these unique bifidobacteria. By detailed characterization of the molecular mechanisms responsible, these studies provide a conceptual framework for bifidobacterial persistence and host interaction in the infant gastrointestinal tract mediated in part through consumption of human milk oligosaccharides.