The inherent immunogenicity of melanoma and renal cell carcinoma (RCC) has made these tumors a focus of considerable research in vaccine development. Recent data from murine studies of immunosurveillance have highlighted the importance of both innate and adaptive immune responses in shaping a tumor's inherent susceptibility to immune surveillance and immunotherapy. Melanoma has been a useful model for the identification of tumor-associated antigens and a number of putative renal cell antigens have been described more recently. These antigens have been targeted using a variety of vaccine strategies, including protein- and peptide-based vaccines, recombinant antigen-expressing vectors, and whole cell vaccine approaches. While evidence for clinical benefit has been disappointing to date, several current phase III clinical trials are in progress based on promising results from phase II studies. Accumulating data suggest that the tumor microenvironment and mechanisms of immunological escape by established tumors are significant barriers that must be overcome before vaccine therapy can be fully realized. This review will discuss the basis for vaccine development, describe some of the more promising vaccine strategies in development, and mention some of the tumor escape mechanisms that block effective anti-tumor immunity for melanoma and RCC.
Copyright © 2012 Elsevier Inc. All rights reserved.