Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene

Nano Lett. 2012 Jun 13;12(6):3162-7. doi: 10.1021/nl301137k. Epub 2012 May 25.

Abstract

Few-layer graphene is a prototypical layered material, whose properties are determined by the relative orientations and interactions between layers. Exciting electrical and optical phenomena have been observed for the special case of Bernal-stacked few-layer graphene, but structure-property correlations in graphene which deviates from this structure are not well understood. Here, we combine two direct imaging techniques, dark-field transmission electron microscopy (DF-TEM) and widefield Raman imaging, to establish a robust, one-to-one correlation between twist angle and Raman intensity in twisted bilayer graphene (tBLG). The Raman G band intensity is strongly enhanced due to a previously unreported singularity in the joint density of states of tBLG, whose energy is exclusively a function of twist angle and whose optical transition strength is governed by interlayer interactions, enabling direct optical imaging of these parameters. Furthermore, our findings suggest future potential for novel optical and optoelectronic tBLG devices with angle-dependent, tunable characteristics.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Graphite / chemistry*
  • Macromolecular Substances / chemistry
  • Materials Testing
  • Molecular Conformation
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure*
  • Particle Size
  • Rotation
  • Spectrum Analysis, Raman / methods*
  • Surface Properties

Substances

  • Macromolecular Substances
  • Graphite