Recognition by nonaromatic and stereochemical subunit-containing polyamides of the four Watson-Crick base pairs in the DNA minor groove

Chembiochem. 2012 Jun 18;13(9):1366-74. doi: 10.1002/cbic.201200137. Epub 2012 May 21.

Abstract

In order to develop an optimal subunit as a T-recognition element in hairpin polyamides, 15 novel chirality-modified polyamides containing (R)-α,β-diaminopropionic acid ((R) β α-NH 2), (S)-α,β-diaminopropionic acid ((S) β α-NH 2), (1R,3S)-3-aminocyclopentanecarboxylic acid ((RS) Cp), (1S,3R)-3-amino-cyclopentanecarboxylic acid ((RS) Cp), (1R,3R)-3-aminocyclopentanecarboxylic acid ((RR) Cp) and (1S,3S)-3-amino-cyclopentanecarboxylic acid ((SS) Cp) residues were synthesized. Their binding characteristics to DNA sequences 5'-TGCNCAT-3'/3'-ACGN'GTA-5' (N⋅N'=A⋅T, T⋅A, G⋅C and C⋅G) were systemically studied by surface plasmon resonance (SPR) and molecular simulation (MSim) techniques. SPR showed that polyamide 4, AcIm-(S) β α-NH 2-ImPy-γ-ImPy-β-Py-βDp (β/(S) β α-NH 2 pair), bound to a DNA sequence containing a core binding site of 5'-TGCACAT-3' with a dissociation equilibrium constant (K(D) ) of 4.5×10(-8) m. This was a tenfold improvement in specificity over 5'-TGCTCAT-3' (K(D) =4.5×10(-7) M). MSim studies supported the SPR results. More importantly, for the first time, we found that chiral 3-aminocyclopentanecarboxylic acids in polyamides can be employed as base readers with only a small decrease in binding affinity to DNA. In particular, SPR showed that polyamide 9 ((RR) Cp/β pair) had a 15-fold binding preference for 5'-TGCTCAT-3' over 5'-TGCACAT-3'. A large difference in standard free energy change for A⋅T over T⋅A was determined (ΔΔG(o) =5.9 kJ mol(-1) ), as was a twofold decrease in interaction energy by MSim. Moreover, a 1:1 stoichiometry (9 to 5'-TGCTCAT-3'/3'-ACGAGTA-5') was shown by MSim to be optimal for the chiral five-membered cycle to fit the minor groove. Collectively, the study suggests that the (S)-α-amino-β-aminopropionic acid and (1R,3R)-3-aminocyclopentanecarboxylic acid can serve as a T-recognition element, and the stereochemistry and the nature of these subunits significantly influence binding properties in these recognition events. Subunit (1R,3R)-3-aminocyclopentanecarboxylic acid broadens our scope to design novel polyamides.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Base Pairing*
  • Base Sequence
  • DNA / chemistry*
  • DNA / genetics
  • DNA / metabolism*
  • Inverted Repeat Sequences
  • Kinetics
  • Nylons / chemistry*
  • Nylons / metabolism*
  • Stereoisomerism
  • Substrate Specificity
  • Thermodynamics

Substances

  • Nylons
  • DNA