Chick myelomonocytic cells transformed by the v-myb oncogene-containing viruses E26 and AMV differ in that the former resemble myeloblasts and express the v-myb-regulated granulocyte-specific mim-1 gene, while the latter resemble monoblasts and are mim-1 negative. We constructed a series of AMV-E26 chimeras and localized the critical differences between these viruses to three point mutations within the second repeat of the v-myb DNA binding domain. These three positions are altered in the v-myb protein of AMV relative to the proteins encoded by c-myb or E26 v-myb. Back mutating AMV v-myb at any of these three sites restored the oncogene's ability to activate the mim-1 gene. Surprisingly, two of these changes led to the transformation, in vitro and in vivo, of cells having a promyelocyte-like phenotype. These results indicate that different forms of v-myb impose alternate phenotypes of differentiation on transformed myeloid cells, probably by regulating unique sets of differentiation-specific genes.