Background & aims: Liver biopsy, the current clinical gold standard for fibrosis assessment, is invasive and has sampling errors, and is not optimal for screening, monitoring, or clinical decision-making. Fibrosis is characterized by excessive accumulation of extracellular matrix proteins including type I collagen. We hypothesize that molecular magnetic resonance imaging (MRI) with a probe targeted to type I collagen could provide a direct and non-invasive method of fibrosis assessment.
Methods: Liver fibrosis was induced in rats with diethylnitrosamine and in mice with carbon tetrachloride. Animals were imaged prior to and immediately following i.v. administration of either collagen-targeted probe EP-3533 or non-targeted control Gd-DTPA. Magnetic resonance (MR) signal washout characteristics were evaluated from T1 maps and T1-weighted images. Liver tissue was subjected to pathologic scoring of fibrosis and analyzed for gadolinium and hydroxyproline.
Results: EP-3533-enhanced MR showed greater signal intensity on delayed imaging (normalized signal enhancement mice: control=0.39 ± 0.04, fibrotic=0.55 ± 0.03, p<0.01) and slower signal washout in the fibrotic liver compared to controls (liver t(1/2)=51.3 ± 3.6 vs. 42.0 ± 2.5 min, p<0.05 and 54.5 ± 1.9 vs. 44.1 ± 2.9 min, p<0.01 for fibrotic vs. controls in rat and mouse models, respectively). Gd-DTPA-enhanced MR could not distinguish fibrotic from control animals. EP-3533 gadolinium concentration in the liver showed strong positive correlations with hydroxyproline levels (r=0.74 (rats), r=0.77 (mice)) and with Ishak scoring (r=0.84 (rats), r=0.79 (mice)).
Conclusions: Molecular MRI of liver fibrosis with a collagen-specific probe identifies fibrotic tissue in two rodent models of disease.
Copyright © 2012 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.