In our effort to develop multifunctional drugs against Parkinson's disease, a structure-activity-relationship study was carried out based on our hybrid molecular template targeting D2/D3 receptors. Competitive binding with [(3)H]spiroperidol was used to evaluate affinity (K(i)) of test compounds. Functional activity of selected compounds in stimulating [(35)S]GTPγS binding was assessed in CHO cells expressing either human D2 or D3 receptors. Our results demonstrated development of highly selective compounds for D3 receptor (for (-)-40K(i), D3 = 1.84 nM, D2/D3 = 583.2; for (-)-45K(i), D3 = 1.09 nM, D2/D3 = 827.5). Functional data identified (-)-40 (EC(50), D2 = 114 nM, D3 = 0.26 nM, D2/D3 = 438) as one of the highest D3 selective agonists known to date. In addition, high affinity, nonselective D3 agonist (-)-19 (EC(50), D2 = 2.96 nM and D3 = 1.26 nM) was also developed. Lead compounds with antioxidant activity were evaluated using an in vivo PD animal model.