Effects of pooling samples on the performance of classification algorithms: a comparative study

ScientificWorldJournal. 2012:2012:278352. doi: 10.1100/2012/278352. Epub 2012 Apr 30.

Abstract

A pooling design can be used as a powerful strategy to compensate for limited amounts of samples or high biological variation. In this paper, we perform a comparative study to model and quantify the effects of virtual pooling on the performance of the widely applied classifiers, support vector machines (SVMs), random forest (RF), k-nearest neighbors (k-NN), penalized logistic regression (PLR), and prediction analysis for microarrays (PAMs). We evaluate a variety of experimental designs using mock omics datasets with varying levels of pool sizes and considering effects from feature selection. Our results show that feature selection significantly improves classifier performance for non-pooled and pooled data. All investigated classifiers yield lower misclassification rates with smaller pool sizes. RF mainly outperforms other investigated algorithms, while accuracy levels are comparable among all the remaining ones. Guidelines are derived to identify an optimal pooling scheme for obtaining adequate predictive power and, hence, to motivate a study design that meets best experimental objectives and budgetary conditions, including time constraints.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Computational Biology / methods*