Substantial progress in understanding mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumors, organ transplantation, chronic infections, and pregnancy is in an exciting developmental phase that might lead to a variety of targeted therapeutic approaches. Recent progress in the interaction between immune/inflammatory cell subsets through cytokines, particularly the extension of the knowledge on reciprocal regulation and counterbalance between subsets of T(H)1, T(H)2, T(H)9, T(H)17, T(H)22, T follicular helper cells and different subsets of regulatory T cells, as well as corresponding and co-orchestrating B-cell, natural killer cell, dendritic cell, and innate lymphoid cell subsets, offers new possibilities for immune intervention. Studies on new subsets confirm the important role of T cells in the instruction of tissue cells and also demonstrate the important role of feedback regulation for the polarization toward distinct T-cell subsets. T(H)17 and T(H)22 cells are 2 emerging T(H) cell subsets that link the immune response to tissue inflammation; IL-17A and IL-17F and IL-22 are their respective prototype cytokines. Although both cytokines play roles in immune defense to extracellular bacteria, IL-17 augments inflammation, whereas IL-22 plays a tissue-protective role. This review focuses on current knowledge on T(H)17 and T(H)22 cells and their role in inflammation, with special focus on the mechanisms of their generation and driving and effector cytokines, as well as their role in host defense, autoimmunity, and allergic diseases.
Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.