Chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic. The combination of cisplatin with other agents has been recognized as a promising strategy to overcome cisplatin resistance. Previous studies have shown that wogonin (5,7-dihydroxy-8-methoxyflavone), a flavonoid isolated from the root of the medicinal herb Scutellaria baicalensis Georgi, sensitizes cancer cells to chemotheraputics such as etoposide, adriamycin, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and TNF. However, the effect of wogonin on cisplatin-induced cytotoxicity has not been previously reported. In this study, the non-small cell lung cancer cell line A549 and the cervical cancer cell line HeLa were treated with wogonin or cisplatin individually or in combination. It was found for the first time that wogonin is able to sensitize cisplatin-induced apoptosis in both A549 cells and HeLa cells as indicated by the potentiation of activation of caspase-3, and cleavage of the caspase-3 substrate PARP in wogonin and cisplatin co-treated cells. Importantly, wogonin robustly induced H2O2 accumulation in these cells, which substantially contributes to the sensitization of cisplatin cytotoxicity by wogonin, as two reactive oxygen species scavengers, butylated hydroxyanisole (BHA) and N-acetyl-L-cysteine (NAC), significantly suppressed the potentiated cytotoxicity caused by wogonin and cisplatin co-treatment. The results from this study provide important new evidence supporting the potential use of wogonin as a cisplatin sensitizer for cancer therapy.