The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities

Antioxid Redox Signal. 2013 Feb 10;18(5):522-55. doi: 10.1089/ars.2011.4391. Epub 2012 Aug 3.

Abstract

The antiporter system x(c)(-) imports the amino acid cystine, the oxidized form of cysteine, into cells with a 1:1 counter-transport of glutamate. It is composed of a light chain, xCT, and a heavy chain, 4F2 heavy chain (4F2hc), and, thus, belongs to the family of heterodimeric amino acid transporters. Cysteine is the rate-limiting substrate for the important antioxidant glutathione (GSH) and, along with cystine, it also forms a key redox couple on its own. Glutamate is a major neurotransmitter in the central nervous system (CNS). By phylogenetic analysis, we show that system x(c)(-) is a rather evolutionarily new amino acid transport system. In addition, we summarize the current knowledge regarding the molecular mechanisms that regulate system x(c)(-), including the transcriptional regulation of the xCT light chain, posttranscriptional mechanisms, and pharmacological inhibitors of system x(c)(-). Moreover, the roles of system x(c)(-) in regulating GSH levels, the redox state of the extracellular cystine/cysteine redox couple, and extracellular glutamate levels are discussed. In vitro, glutamate-mediated system x(c)(-) inhibition leads to neuronal cell death, a paradigm called oxidative glutamate toxicity, which has successfully been used to identify neuroprotective compounds. In vivo, xCT has a rather restricted expression pattern with the highest levels in the CNS and parts of the immune system. System x(c)(-) is also present in the eye. Moreover, an elevated expression of xCT has been reported in cancer. We highlight the diverse roles of system x(c)(-) in the regulation of the immune response, in various aspects of cancer and in the eye and the CNS.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Amino Acid Transport Systems / metabolism
  • Amino Acid Transport Systems / physiology*
  • Animals
  • Cystine / metabolism*
  • Glutamic Acid / metabolism*
  • Humans
  • Oxidation-Reduction
  • Phylogeny

Substances

  • Amino Acid Transport Systems
  • Glutamic Acid
  • Cystine