White clover (Trifolium repens L.) is an allotetraploid species (2n = 4X = 32) that is widely distributed in temperate regions and cultivated as a forage legume. In this study, we developed expressed sequence tag (EST)-derived simple sequence repeat (SSR) markers, constructed linkage maps, and performed comparative mapping with other legume species. A total of 7982 ESTs that could be assembled into 5400 contigs and 2582 singletons were generated. Using the EST sequences that were obtained, 1973 primer pairs to amplify EST-derived SSR markers were designed and used for linkage analysis of 188 F(1) progenies, which were generated by a cross between two Japanese plants, '273-7' and 'T17-349,' with previously published SSR markers. An integrated linkage map was constructed by combining parental-specific maps, which consisted of 1743 SSR loci on 16 homeologous linkage groups with a total length of 2511 cM. The primer sequences of the developed EST-SSR markers and their map positions are available on http://clovergarden.jp/. Linkage disequilibrium (LD) was observed on 9 of 16 linkage groups of a parental-specific map. The genome structures were compared among white clover, red clover (T. pratense L.), Medicago truncatula, and Lotus japonicus. Macrosynteny was observed across the four legume species. Surprisingly, the comparative genome structure between white clover and M. truncatula had a higher degree of conservation than that of the two clover species.
Keywords: comparative map; expressed sequence tag–simple sequence repeat; linkage disequilibrium; white clover.