Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid

ACS Nano. 2012 Jul 24;6(7):6337-44. doi: 10.1021/nn3018365. Epub 2012 Jun 18.

Abstract

Herein a photon-manipulated mesoporous release system was constructed based on azobenzene-modified nucleic acids. In this system, the azobenzene-incorporated DNA double strands were immobilized at the pore mouth of mesoporous silica nanoparticles. The photoisomerization of azobenzene induced dehybridization/hybridization switch of complementary DNA, causing uncapping/capping of pore gates of mesoporous silica. This nanoplatform permits holding of guest molecules within the nanopores under visible light but releases them when light wavelength turns to the UV range. These DNA/mesoporous silica hybrid nanostructures were exploited as carriers for the cancer cell chemotherapy drug doxorubicin (DOX) due to its stimuli-responsive property as well as good biocompatibility via MTT assay. It is found that the drug release behavior is light-wavelength-sensitive. Switching of the light from visible to the UV range uncapped the pores, causing the release of DOX from the mesoporous silica nanospheres and an obvious cytotoxic effect on cancer cells. We envision that this photocontrolled drug release system could find potential applications in cancer therapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / administration & dosage
  • Azo Compounds / chemistry
  • Cell Line, Tumor
  • DNA* / chemistry
  • Delayed-Action Preparations / administration & dosage
  • Delayed-Action Preparations / chemistry
  • Doxorubicin / administration & dosage
  • Drug Delivery Systems*
  • Humans
  • Microscopy, Electron, Scanning
  • Nanoparticles* / chemistry
  • Nanoparticles* / radiation effects
  • Nanoparticles* / ultrastructure
  • Nanotechnology
  • Photochemical Processes
  • Photons
  • Silicon Dioxide

Substances

  • Antineoplastic Agents
  • Azo Compounds
  • Delayed-Action Preparations
  • Silicon Dioxide
  • Doxorubicin
  • DNA
  • azobenzene