The stability of wild-type and deletion mutants of human C-terminus Hsp70-interacting protein (CHIP)

Protein Pept Lett. 2013 May;20(5):524-9. doi: 10.2174/0929866511320050005.

Abstract

Carboxyl terminus of Hsp70 interacting protein (CHIP) is a dimeric co-chaperone involved in providing an appropriate balance between the synthesis and degradation of proteins, which is essential for normal cellular growth and function. Previous work has shown that CHIP, but not its isolated domains, has chaperone activity that is enhanced by heat. In this work, we investigate how heat and urea affect the stability of its domains. We found that the deletion mutant containing the TPR domain, which binds to chaperones Hsp70 or Hsp90, was monomeric and showed similar folding and stability to WT, while the mutant containing the U-box ubiquitin ligase domain was dimeric but had very low stability. The deletion mutants appeared to maintain most of their structure compared to the WT protein, but the regions around the tryptophan residues, which are at the interface of the domains in the WT structure, appeared to be more unfolded, which indicated that the region of contact between domains is likely important for the chaperone function.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Humans
  • Models, Molecular
  • Molecular Sequence Data
  • Protein Binding
  • Protein Folding
  • Protein Stability
  • Sequence Deletion
  • Ubiquitin-Protein Ligases / chemistry*
  • Ubiquitin-Protein Ligases / genetics
  • Ubiquitin-Protein Ligases / metabolism
  • Urea / chemistry

Substances

  • Urea
  • STUB1 protein, human
  • Ubiquitin-Protein Ligases